Docs

Docs

  • Develop
  • Validate
  • Integrate
  • Learn

›Validators

Welcome to Elrond

  • Welcome to Elrond

Technology

  • Architecture Overview
  • Glossary
  • Entities
  • Chronology
  • Secure Proof of Stake
  • Adaptive State Sharding
  • The Elrond WASM VM
  • Cross Shard Transactions

Wallet

  • Wallets - Overview
  • Web Wallet
  • Maiar Web Wallet Extension
  • Webhooks
  • Ledger

Tokens

  • Native Tokens
  • ESDT tokens
  • NFT tokens

Validators

  • Validators - Overview
  • System Requirements
  • Install a Mainnet Node

    • Scripts & User config
    • Installing a Validator Node
    • Optional Configurations
    • How to use the Docker Image

    Install a Testnet/Devnet Node

    • Scripts & User config
    • Installing a Validator Node
    • Manage a validator node
    • How to use the Docker Image

    Manage your keys

    • Validator Keys
    • Wallet Keys
    • Protecting your keys

    Staking, Unstaking, Unjailing

    • Staking, unstaking and unjailing
    • Staking
    • Unjailing
    • The Staking Smart Contract
  • The Delegation Manager
  • Convert An Existing Validator Into A Staking Pool
  • Merging A Validator Into An Existing Delegation Smart Contract
  • Rating
  • Elrond Node upgrades
  • Node redundancy
  • Import DB
  • Node CLI
  • Node Databases
  • Useful Links & Tools
  • FAQs

Developers

  • Developers - Overview
  • Tutorials

    • Build a dApp in 15 minutes
    • Build a Microservice for your dApp
    • The Crowdfunding Smart Contract (part 1)
    • The Crowdfunding Smart Contract (part 2)
    • The Counter Smart Contract
    • Custom Wallet Connect

    Signing Transactions

    • Signing Transactions
    • Tools for signing
    • Signing programmatically

    Gas and Fees

    • Overview
    • EGLD transfers (move balance transactions)
    • System Smart Contracts
    • User-defined Smart Contracts

    Developer reference

    • The Elrond Serialization Format
    • Smart contract annotations
    • Smart contract modules
    • Smart contract to smart contract calls
    • Smart Contract Developer Best Practices
    • Code Metadata
    • Smart Contract API Functions
    • Storage Mappers
    • Rust Testing Framework
    • Rust Testing Framework Functions Reference
    • Rust Smart Contract Debugging
    • Random Numbers in Smart Contracts

    Developers Best Practices

    • Basics
    • BigUint Operations
    • The dynamic allocation problem
    • Multi-values

    Mandos tests reference

    • Mandos Overview
    • Mandos Structure
    • Mandos Simple Values
    • Mandos Complex Values
    • Embedding Mandos code in Go
  • Constants
  • Built-In Functions
  • Account storage
  • Setup a Local Testnet
  • Set up a Local Testnet (advanced)
  • Creating Wallets

SDK and Tools

  • SDKs and Tools - Overview
  • REST API

    • REST API overview
    • api.elrond.com
    • Gateway overview
    • Addresses
    • Transactions
    • Network
    • Nodes
    • Blocks
    • Virtual Machine
    • Versions and Changelog
  • Proxy
  • Elasticsearch
  • erdpy

    • erdpy
    • Installing erdpy
    • Configuring erdpy
    • erdpy CLI
    • Deriving the Wallet PEM file
    • Sending bulk transactions
    • Writing and running erdpy scripts
    • Smart contract interactions

    erdjs

    • erdjs
    • Cookbook
    • Extending erdjs
    • Writing and testing interactions
    • Migration guides
    • Signing Providers for dApps
  • erdgo
  • erdcpp
  • erdjava
  • erdkotlin
  • erdwalletjs-cli

Integrators

  • Integrators - Overview
  • EGLD integration guide
  • ESDT tokens integration guide
  • Observing Squad
  • Accounts Management
  • Creating Transactions
  • Querying the Blockchain

Node redundancy

Elrond Validator Nodes can be configured to have one or more hot-standby nodes. This means additional nodes will run on different servers, in sync with the Main Validator node. Their role is to stand in for the Main Validator node in case it fails, to ensure high availability.

This is a redundancy mechanism which allows the Main Validator operator to start additional 'n' hot-standby nodes, each of them running the same 'validatorKey.pem' file. The difference between configurations consists on an option inside the prefs.toml file.

Hot standby nodes are configured using the 'RedundancyLevel' option in the 'prefs.toml' configuration file:

  • a 0 value will represent that the node is the Main Validator. The value 0 will be the default, therefore if the option is missing it will still make that node the Main Validator by default. With consideration to backwards compatibility, the already-running Validators are not affected by the addition of this option. Moreover, we never overwrite the prefs.toml files during the node's upgrade.

The values of RedundancyLevel are interpreted as follows:

  • a positive value will represent the "order of the hot-standby node" in the automatic fail-over sequence. Example: suppose we have 3 nodes running with the same BLS key. One has the redundancy level set to 0, another has 1 and another with 3. The node with level 0 will propose and sign blocks. The other 2 will sync data with the same shard as the Main Validator (and shuffle in and out of the same shards) but will not sign anything. If the Main Validator fails, the hot-standby node with level 1 will start producing/signing blocks after level*5 missed rounds. So, after 5 missed rounds by the Main Validator, the hot-standby node with level 1 will take the turn. If hot-standby node 1 is down as well, hot-standby node 2 will step in after 3*5 = 15 rounds after the Main Validator failed and 10 rounds after the failed hot-standby node 1 should have been produced a block.
  • a large value for this level option (say 1 million), or a negative value (say -1) will mean that the hot-standby nodes won't get the chance to produce/sign blocks but will sync with the network and shuffle between shards just as the Main Validator will.
tip

The hot-standby nodes will advertise on the network a different public key (autogenerated at start-up) and thus, concealing the real public key that will be used when signing the header blocks.

tip

If the Main Validator (RedundancyLevel 0) gets back online, the hot-standby node(s) revert to standby mode.

warning

Do not use the same redundancy level on more than one node. Otherwise, the nodes with the same RedundancyLevel value will start signing blocks in parallel in the same time. Although the protocol is not negatively affected by double signing, in the near future the BLS key that will perform double signing will have its stake slashed.

The random BLS key on hot-standby nodes has the following purposes:

  • the hot-standby node(s) will not cause BLS signature re-verification when idle.
  • it slightly prevents DDoS attacks as an attacker can not find all IPs behind a targeted BLS public key: when an attacker takes down the Main Validator, the hot-standby nodes will advertise the public key when they will need to sign blocks, but not sooner.
← Elrond Node upgradesImport DB →
Made withby the Elrond team.
GithubChat
Main siteWalletExplorerBridgeDocsGrowthMaiarMaiar Exchange